
Journal of Gastroenterology
Fecha de publicación:
Autores: Yoshifumi Shimada, Shujiro Okuda, Yu Watanabe, Yosuke Tajima, Masayuki Nagahashi, Hiroshi Ichikawa, Masato Nakano, Jun Sakata, Yasumasa Takii, Takashi Kawasaki, Kei-ichi Homma, Tomohiro Kamori, Eiji Oki, Yiwei Ling, Shiho Takeuchi & Toshifumi Wakai
DOI: https://doi.org/10.1007/s00535-021-01789-w
Background: Tumor mutational burden-high (TMB-H), which is detected with gene panel testing, is a promising biomarker for immune checkpoint inhibitors (ICIs) in colorectal cancer (CRC). However, in clinical practice, not every patient is tested for TMB-H using gene panel testing. We aimed to identify the histopathological characteristics of TMB-H CRC for efficient selection of patients who should undergo gene panel testing. Moreover, we attempted to develop a convolutional neural network (CNN)-based algorithm to predict TMB-H CRC directly from hematoxylin and eosin (H&E) slides.
Leer más
Comentarios
Para dejar un comentario antes debes iniciar sesión:
¿No tienes una cuenta?
Regístrate a través de éste enlace.