
Arthritis & Rheumatology
Fecha de publicación: 24 July 2019
DOI: https://doi.org/10.1002/art.41056
Autores: Yuanfang Guan, Hongjiu Zhang, Daniel Quang, Ziyan Wang, Stephen C. J. Parker, Dimitrios A. Pappas, Joel M. Kremer, Fan Zhu
Background: Accurate prediction of treatment responses in rheumatoid arthritis (RA) patients can provide valuable information on effective drug selection. Anti–tumor necrosis factor (anti‐TNF) drugs are an important second‐line treatment after methotrexate, the classic first‐line treatment for RA. However, patient heterogeneity hinders identification of predictive biomarkers and accurate modeling of anti‐TNF drug responses. This study was undertaken to investigate the usefulness of machine learning to assist in developing predictive models for treatment response.
Leer más
Comentarios
Para dejar un comentario antes debes iniciar sesión:
¿No tienes una cuenta?
Regístrate a través de éste enlace.